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Abstract. A very significant progress has been achieved in lattice field theory in recent years. This has
been possible thanks to the spectacular increase in the computer speed, but most importantly by the
development of new algorithms, the use of improved actions and the ingenuity of the questions being
asked. I will illustrate the recent progress in the field by considering a few selected examples of these.

PACS. PACS-11.15.Ha Lattice gauge theory – PACS-12.38.Gc Lattice QCD calculations

1 Introduction

Lattice Field Theory is a method to study field theories
from first principles and beyond perturbation theory. A
prototype field theory that needs to be treated by non-
perturbative means is QCD, where from the very simple
Lagrangian, which only depends on the gauge coupling
and the quark masses:

LQCD = − 1
2g2

0
Tr{FµνFµν} +

∑

f

Ψ̄f{D +mf}Ψf , (1)

one can in principle obtain a large number of predictions.
The starting point is the discretization of this La-

grangian in a space-time lattice in a way that preserves
gauge invariance, locality and unitarity. The chiral sym-
metry of the QCD Lagrangian is unfortunately hard to
implement, because of the famous Nielsen-Ninomiya the-
orem [1]. The most commonly used regularizations over-
come this problem by having an explicit breaking of the
symmetry (Wilson fermions) or by keeping a U(1) sub-
group at the price of breaking the flavour group completely
(staggered fermions).

In either case the computation of observables via the
path integral formulation becomes a finite calculation:

〈O〉 =
∫
D[Aµ] O det(D +mf ) e−Sgauge

∫
D[Aµ] det(D +mf )e−Sgauge

. (2)

However this calculation in SU(3) involves (T/a)×(L/a)3
×8 × 4 integrals, which for a reasonable lattice spacing
a = 0.1fm (or inverse cutoff) and volume L = 2fm (L/a =
20) is an impossible task. Statistical methods such as the
Montecarlo approach are necessary.

Universality warranties that, once we properly renor-
malize and take the continuum limit, a → 0, we obtain
results in QCD that are exact up to statistical errors, pro-
vided the chiral symmetry is properly restored. In the case

of Wilson fermions, where the breaking of the symmetry
is explicit, it is necessary to fine tune the couplings to en-
sure that Ward identities are restored in the continuum
limit. This is by now a well understood procedure. In the
case of staggered fermions, the naive continuum limit is
chiral, but the number of flavours is naturally a multiple
of Nf = 4. Getting rid of the additional flavours requires
modifications that do not obviously preserve locality:

det(D +mf ) → [det(Dstaggered +mf )]Nf /4
. (3)

In spite of the remarkable progress in lattice QCD of
the recent years, quenching remains an embarrassing but
necessary approximation in many situations. This approx-
imation amounts to neglecting fermion loops in the path
integral, i.e. making the substitution

det(D +mf ) → 1 (4)

in (2). Although this approximation introduces a system-
atic error that cannot be estimated, experience shows that
results are not far from experiment and it is thus a very
good testing ground for the methods and techniques.

Progress in this field would not have been possible
without the exponential growth of the computer speed,
which is illustrated in Fig. 1. This progress has permit-
ted for instance that quenched QCD simulations can now
be performed in small PC clusters affordable to smaller
research groups.

However, the increase in computer power has not been
enough. Other aspects have been equally essential:

– Numerical algorithms which can get you orders of mag-
nitude as illustrated in Fig. 1.

– Improved actions: all lattice actions that preserve the
symmetries of the continuum theory and have the same
particle content lead to the same continuum limit, how-
ever you can speedup the approach to this limit by
choosing a better action
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Fig. 1. Increase in computational speed for different platforms
as a function of the year in the last ten years and normalized to
the situation of 1987, compared to the gain due to algorithmic
development (open circles). Taken from [2]

– Asking the right questions: the lattice allows us to do
experiments that we cannot do in the laboratory. We
can setup the degrees of freedom in QCD in different
(unphysical) conditions that are useful to prove dif-
ferent properties of the system. We can for instance
consider a finite volume, quark masses that differ from
the physical ones, fixed topological sectors.

I will illustrate recent progress in the field by showing
some selected examples of all these three points.

Unfortunately I cannot cover in this review all the in-
teresting results in this field (O(250) contributions to Lat-
tice2003 [3]). I will mostly concentrate in QCD. In partic-
ular I will not cover the promising new ideas to deal with
SUSY theories on the lattice [4]. Neither I will provide new
world averages for the quantities relevant in CKM fits. For
these and other interesting topics see the contributions to
this conference [5,6,7,8,9].

2 Algorithmic improvements

2.1 Confinement and the QCD string

It is an old idea that non-abelian Yang-Mills theories could
be (effective) string theories. This could explain confine-
ment or the linear growth of the potential with the dis-
tance between an infinitely heavy (static) quark and anti-
quark

lim
r→∞V (r) = σr σ : string tension, (5)

as well as the fact that hadronic resonances fall approxi-
mately in Regge trajectories, satisfying a proportionality

Q
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Q

Fig. 2. Flux tube between static color charges
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Fig. 3. Correlator of Polyakov loops

between their total angular momentum and their mass
squared:

Ji ∼ m2
i . (6)

In its less ambitious formulation, this correspondence
implies that the low energy degrees of freedom are the
”stringy” excitations of the thin flux tube that forms link-
ing color charges (see Fig. 2). One can then write the most
general action for these degrees of freedom which implies
a universal prediction for the subleading corrections to 5
at large distances, which depend only on the number of
degrees of freedom of the vibrating string. In the case of
the bosonic string in D dimensions one finds [10]:

V (r) = σr + µ− π(D − 2)
24r

+ O
(

1
r2

)
. (7)

µ is some non-universal constant, but the third term, re-
ferred to as Lüscher term, is the same for all the string
theories in the same universality class.

This prediction could be testable on the lattice formu-
lation of Yang-Mills theory, but this has been an enormous
challenge in the past. On the lattice, the static poten-
tial is measured from the correlation function of two large
Wilson or Polyakov loops (path-ordered products of link
variables that loop around the temporal extent of the lat-
tice, see Fig. 3). At large times one can extract the static
potential from

lim
T→∞

〈P (r)P ∗(0)〉 = e−TV (r) {1 + O (e−Tε
)}

P (r) ≡ Tr [U0(x, a)U0(x, 2a)....U0(x, Ta)] . (8)

This is however a very difficult measurement because the
signal decreases exponentially with the loop area:

〈P (r)P ∗(0)〉 ∼ e−σrT , (9)

while the noise is approximately constant. For example,
increasing the area of the loop by 1 fm2, implies that the
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Fig. 4. − 1
2r3V ′′(r) as a function of r for SU(3) in 4D and 3D.

The asymptotic solid lines indicate the expectation from the
bosonic string. Taken from [13]

statistics has to increase by 3×104 to maintain a constant
signal/noise!

As a result only in simple gauge theories such as Z(2)
in 3D, where very powerful algorithms are available, has
the Lüscher term been computed reliably [11]. Recently
however the situation has changed, thanks to a new algo-
rithm that can work for any gauge theory [12]. The main
idea is to use the locality of the action in order to rewrite
average over the product of links (which is the naive defi-
nition of the Wilson or Polyakov loops) as a product of the
averages of links over smaller sublattices. Since these sub-
lattice averages are exponentially larger than the full aver-
age, their numerical evaluation is much simpler. It is now
possible to perform calculations of large Polyakov loops
at least O(10 − 100) more precisely and for the first time
the Lüscher term has been measured with good accuracy
for SU(3) in 3 and 4 dimensions [13] as shown in Fig. 4.
It is completely consistent with that expected from the
effective bosonic string picture of QCD. In fact the string
behaviour sets in at surprisingly short distances around
0.5 fm. These results constitute a strong constrain to the
dreams of a fundamental equivalence between Yang-Mills
and string theory!

2.2 String breaking from Wilson loops

The same algorithm mentioned above, has been used to
see for the first time the expected string breaking on the
lattice from the correlation function of Wilson loops [14].

If you consider the static potential between adjoint
charges, the string is expected to break because adjoint
charges can be screened by gluons.

The signal of string breaking would be to observe that
the static potential stops growing with the distance and
remains constant afterwards. This is expected to happen
at rather large temporal distances, where algorithms such
as the one described above become essential. In fact, for
the first time a clear signal of string breaking has been ob-
served in this way [14], as shown in Fig. 5. String breaking

Fig. 5. Static potential between adjoint charges in SU(2) in
3D as a function of the separation. Taken from [14]

Fig. 6. Conjectured phase diagram of QCD at finite temper-
ature and density

is observed in SU(2) in 3D only at distances of T ∼ 2 fm.
The potential at that point agrees with twice the mini-
mum energy of the singlet quark-gluon state.

2.3 QCD at finite density

The phase diagram of QCD at finite temperature and den-
sity has been conjectured to have the rich structure shown
in Fig. 6 [15].

The study of this phase diagram on the lattice is very
difficult owing to the infamous sign problem, i.e. the fact
that the fermion determinant at finite chemical potential,
µ, is not positive definite and standard Monte Carlo meth-
ods fail.

In the last years, new methods to explore the region
of small chemical potential, µB = 3µ ≤ 500MeV, have
been proposed. Note that this small µ region is probably
not close enough to reach the tricritical point of Fig. 6,
but it encompasses the region relevant for RICH physics,
which corresponds to µB ≤ 50. Three different methods
have been shown to agree in this regime. They all involve
some real approximation to the fermionic action, for which
importance sampling can be performed, that can then be
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Fig. 7. Comparison of the phase transition line on the plane
(µ, T ) with the three methods described in the text. Taken
from the second reference in [15]

corrected by reweighting the observables. The partition
function is rewritten as:

Z[µ, T ] =
∫
D[Aµ] det M̃ e−Sg[T0]

︸ ︷︷ ︸
importance sampling

detM(µ, T ) e−Sg[T ]

det M̃ e−Sg[T0]︸ ︷︷ ︸
observable

=
〈

det(M(µ, T )) e−Sg[T ]

det(M̃) e−Sg[T0]

〉
. (10)

where detM(µ, T ) is the fermion determinant at finite µ
and T , while det M̃ is the real approximation to it. The
three methods differ in the definition of M̃ :

– Multiparameter reweighting [16]. The idea is to per-
form the importance sampling with the action at µ = 0
and some different temperature T0, i.e. M̃ = M(0, T0).
The method seems to be much better behaved than
the old idea of using M̃ = M(0, T ), because the over-
lap between the finite µ and µ = 0 ensembles can be
enhanced by tunning T0 appropriately.

– A Taylor expansion of M(µ, T ) in µ/T is performed,
so that the importance sampling is done with M̃ =
M(0, T ) [17].

– Importance sampling with imaginary µ (M̃ =
M(iµ, T )) together with an analytic continuation
through a Taylor expansion [18].

The results for the critical line of these three different
methods are compared in Fig. 7 (taken from the second
reference of [15]) for two light flavours. There is good
agreement for µB ≤ 500 MeV, however it is not clear if
the tricritical point can be located safely with these meth-
ods. The goal of approaching the superconduting phase
remains an enormous challenge.

3 Improved actions

The idea of Symanzik improvement [19] is that cutoff ef-
fects at finite a can be accounted for by the most general
continuum Lagrangian including higher order operators

compatible with the lattice symmetries:

Slat(a) =
∫
d4x

{Ld=4
0 (x) + aLd=5

1 (x) + a2Ld=6
2 (x) + ...

}

(11)

Scaling violations are of O(a) if there are operators of
dimension five which satisfy the lattice symmetries, as for
Wilson fermions, or O(a2) if they start at dimension six
(staggered fermions).

Any observable computed at finite a will show scaling
violations of the form:

Observ(a) = Observ
[
1 + aΛ1 + (aΛ2)2 + ...

]
. (12)

The leading scaling violations of O(a) might come from
the operators of dimension five present in the action of (11)
or from higher order operators correcting the observable
itself. Improvement is the technique to correct for those
effects by adding the corresponding operators to the action
or the observable and tunning their coefficients to make
Λ1 vanish.

O(a) improvement has been implemented systemati-
cally for Wilson fermions for the action and quark bilin-
ear operators and it has been shown to be very important
to keep the continuum extrapolations under control. This
was achieved some years ago and good reviews on the sub-
ject already exist. We refer the reader to these for further
details and references [20]. It should be noted however that
partial improvements (for example at tree-level) can make
continuum extrapolations more complicated, because sub-
leading O(a2) effects can be as large as the uncanceled
leading ones, so more parameters are needed in the fits.

The improvement of the weak Hamiltonian (4-fermion
operators in ∆B,∆S transitions) remains an enormous
challenge. The only hope seems to be to have an exact
chiral symmetry on the lattice 1. In recent years this long-
standing goal has has been finally achieved with the so-
called Ginsparg-Wilson fermion formulations.

Lattice Dirac operators can be constructed which are
local, do not suffer from the doubling problem and satisfy
the so-called Ginsparg–Wilson (GW) relation [22]:

{D, γ5} = aDγ5D. (13)

This relation was first derived for a Dirac operator ob-
tained from a renormalization group blocking of the con-
tinuum one. It was found that this relation implies that
Ward identities associated with a standard chiral trans-
formation are satisfied on shell at finite lattice spacing,
however no explicit solution of (13) was found in [22] and
for this reason it fall in oblivion until it was rediscovered
in 1997 by P. Hasenfratz [23] in the context of searching
for a fixed-point Dirac operator (ie. a fixed-point operator
of a renormalization group transformation).

In the meantime, a different avenue was being pursued
to search for lattice chirality. It is known since a long time
that an infinite domain-wall (DW) in 5D leads naturally
to chiral fermions in 4D [24,25]. It was the idea of Ka-

1 See however some promising new ideas with twisted-mass
Wilson fermions [21].
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Fig. 8. Finite domain wall

plan [26,27,28] to latticize the DW construction. This re-
quires to introduce a finite lattice spacing in the fourth real
dimensions, a, and a another one, as (possibly different),
in the extra one. Also a practical implementation requires
a finite extent of the extra dimension, with a number of
lattice sites Ns. A five dimensional fermion on this lattice
is then coupled to a mass term which varies in the extra
dimension as shown in Fig. 8. By analogy with the contin-
uum construction it is expected that if the limit Ns → ∞
is taken at finite a and as, two lattice ”chiral” fermions,
with opposite chiralities, should appear localized at the
two kinks. For a long time it was not clear in what way
this lattice construction satisfied a lattice chiral symmetry
until it was realized that in fact it is through the magic
Ginsparg-Wilson relation.

The effective action and propagator of the light bound-
ary fields can be described in terms of 4D operator aDNs

which satisfies the GW relation in the limit Ns → ∞.
This limit can be obtained analytically to give the famous
overlap operator [29]:

lim
as→0,Ns→∞

aDNs
= aDov = 1 + γ5sign(Q)

Q ≡ γ5(DW −m0) (14)

where DW is for example the standard Wilson-Dirac op-
erator and m0 is a large mass of O(a−1).

Dov was the first explicit construction of GW fermions.
It is easy to show that this operator satisfies the GW rela-
tion, has the right continuum limit, no doublers and that
it is a local operator [30]. Indeed it can be shown that the
coupling between two fermion fields localized at different
sites on the lattice decays exponentially with the distance,
||Dov(x, y)|| ≤ e−γ||x−y||/a.

It was soon realized that in fact the GW relation im-
plies an exact symmetry [31] at finite a under which the
fermion and antifermion fields transform in the following
way:

δχΨ = ε γ5(1 − aD)Ψ δχΨ̄ = εΨ̄γ5 (15)

In spite of this exact symmetry, the expected UA(1)
anomaly is recovered due to the non-invariance of the
fermion measure under a singlet chiral rotation:

〈δχO〉F = Tr [γ5(1 − aD/2)] 〈O〉F

= Nf × index(D)〈O〉F (16)

and an index theorem is exactly satisfied. In particu-
lar, this implies that topological sectors can be distin-
guished [32].

On the other hand the full flavour-symmetry group
of QCD can be maintained exactly [33]. It is possible to
define left and right projectors of the fermion fields:

ΨR,L = P̂±Ψ Ψ̄L,R = Ψ̄P± (17)

with P± ≡ (1 ± γ5)/2, P̂± ≡ (1 ± γ5(1 − aD))/2 in such a
way that the massless fermion action nicely factorizes:

Ψ̄DΨ = Ψ̄LDΨL + Ψ̄RDΨR. (18)

It is then trivial to see that there is an exact SU(Nf )L ×
SU(Nf )R flavour symmetry under which these chiral pro-
jectors transform in a continuum-like fashion:

ΨL → VLΨL ΨR → VRΨR VL,R ∈ SU(Nf )L,R. (19)

The symmetry can be broken softly by adding quark
masses as terms of the form: Ψ̄LmΨR + Ψ̄Rm

†ΨL. The soft
breaking then ensures that

– There is a conserved axial current in the naive chiral
limit m → 0

– Operator classification and mixing is enormously sim-
plified: e.g. four fermion operators only mix with those
in the same chiral representation

– Scaling violations areO(a2): the exact chiral symmetry
forbids all operators of d = 5 in the action. The same
is true for many weak composite operators.

GW are expensive to simulate (O(100) times Wilson),
but feasible in the quenched approximation. A number
of simulations have been performed recently in realistic
lattices of extent L = 1 − 3 fm with cutoff a = 0.08 −
0.2 fm. In the following, I would like to illustrate the use
of these fermions with two recent applications where the
exact chiral symmetry has been an essential ingredient.

3.1 BK with GW fermions

The measurement of the relevant matrix elements entering
K0 − K̄0 mixing has been an old and great challenge for
lattice QCD in the past. The weak Hamiltonian mediating
these transitions can be written in terms of ∆S = 2 four
fermion operators

H∆S=2 = CW (µ)O∆S=2(µ) + ... (20)

which, at the bare level, are products of left currents
Obare

∆S=2 = [s̄d]V −A[s̄d]V −A. The matrix element entering
K0 − K̄0 mixing is traditionally parametrized in terms of
the BK parameter defined as:

〈K̄0|O∆S=2(µ)|K0〉 =
8
3
M2

KF
2
KBK(µ). (21)

The computation of these matrix elements on the lat-
tice is not easy with standard fermion regularizations. On
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Fig. 9. BMS
K (2GeV ) in several computations using different

fermion formulations as a function of the lattice spacing in
units of r0 = 0.5fm. The GW determination (diamond) of [36]
in a rather coarse lattice is in good agreement with the con-
tinuum results using staggered (square and circle) and Wilson
fermions (triangles in all orientations). Taken from [5]

the one hand, in the case of Wilson fermions, the breaking
of chiral symmetry implies that the bare operator mixes
with other chiral structures (V ×V −A×A, S×S±P×P ,
T ×T ) which makes the non-perturbative renormalization
extremely complicated in practice. Only recently smart
tricks have been found to get rid of these mixings [34].
In the case of staggered fermions, a subgroup of the chi-
ral group is maintained but at the cost of breaking the
flavour group. Mixing with many other flavour structures
occurs and the renormalization has only been done pertur-
batively in this case [35]. Instead with GW fermions the
renormalization is as simple as in the continuum: it is just
multiplicative. Even though Wilson fermions are presently
also able to perform the renormalization of these operators
non-perturbatively, the scaling violations in that case are
of O(a), while they are suppressed to O(a2) in the case of
GW fermions, which makes the new determination of BK

of [36] competitive as shown in Fig. 9. For more details
see the parallel contribution in [5].

3.2 QCD versus random matrix theory

In the presence of spontaneous chiral symmetry breaking
(χSB), the QCD partition function at fixed topological
charge has been conjectured to be equivalent to that of a
Random Matrix Theory (RMT) [37]. For a review see [38].
More precisely if the infinite volume limit of the QCD
partition function at fixed topological charge ν is taken
keeping the quantity mΣV fixed, where Σ is the quark
condensate, then:

lim
N→∞,mρ(0)N=fixed

ZRMT
ν (m) =

lim
V →∞,mΣV =fixed

ZQCD
ν (m) (22)

where the RMT partition function is:

0 5 10 15
0
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0.3

0.4

0.5

p1(ζ)

ρS(ζ)

ζ

p2(ζ) p3(ζ) p4(ζ)

Fig. 10. ρ(λ) of the Dirac operator

ZRMT
ν ≡

∫
dW

Nf∏

f=1

det(iM +m) exp
[−N/2TrV (M2)

]

(23)

with M =

(
0 W †

W 0

)
, and W is a random complex matri-

ces of rectangular size N × (N + ν). ρ(λ) is the density of
eigenvalues of M close to zero. Note that the limit on the
left-hand side of (22), or microscopic limit, implies to take
the size of the matrices, N , to infinity keeping mρ(0)N
fixed and it assumes that the eigenvalue density close to
zero is finite, ρ(0) 	= 0. In this case, it well known that the
eigenvalue spectrum close to zero is universal for all these
RMT, that is independent of V (M).

This equivalence gives a precise prediction for the
eigenvalue density close to zero as well as for the indi-
vidual low-lying eigenvalue distributions of the Dirac op-
erator. The eigenvalue density is given in terms of Bessel
functions and depends only on the condensate, Σ:

ρν(λ) =
Σζ

2
(
JNf +ν(ζ)2 − JNf +ν−1(ζ)JNf +ν+1(ζ)

)

ζ ≡ λΣV, (24)

and is depicted in Fig. 10.
In order to test this prediction on the lattice, it is

essential to have an exact chiral symmetry and distin-
guish topological sectors. Previous simulations with stag-
gered fermions [38] have shown clear evidence in favour
of the conjecture, however staggered fermions are not in
the same universality class as QCD at finite lattice spac-
ing. Only recently this conjecture has been tested close to
the continuum limit and in realistic volumes using GW
fermions, which are indeed in the same universality class
as QCD (SU(3) with matter in the fundamental) as shown
in Fig. 11 [39].

The agreement of the ratios of the averages of indi-
vidual eigenvalues with the predictions of RMT is truly
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Fig. 12. Ratio of averages of eigenvalues measured in quenched
QCD in a lattice L = 1.49fm and a = 0.074 fm for the three
topological sectors with charge ν = 0, 1, 2. Taken from [40]

remarkable for L ≥ 1.2 fm [40], as shown in Fig. 12, where
the ratio of the averages of the different eigenvalues are
compared with the parameter-free predictions of RMT.

The averages themselves can also be compared with
the RMT predictions, which depend only on one low
energy coupling: Σ, the chiral condensate. In fact this
method gives not only the most precise determination of
Σ, but also a very clean proof that indeed this is the order
parameter of chiral symmetry breaking in QCD.

4 Ask the right questions

A typical problem in lattice QCD is the two or multi-scale
problem as depicted in Fig. 13, that is the fact that there
is more than one relevant scale. In this case, a realistic
lattice simulation requires very large lattices, because it is
necessary to ensure that the wavelength of the heavy scale
is large compared to the lattice spacing, λheavy/a � 1,

Fig. 13. Two-scale problem

to avoid large cutoff effects, but on the other hand the
wavelength of the light scale should be large compared to
the lattice size, λlight/L � 1, since otherwise large finite
size effects will be present. The result is that the number
of points in the lattice, L/a, has to be increased by a factor
∼ λlight

λheavy
with respect to the one-scale problem.

This situation is quite common in realistic situations
both in heavy quark physics where λlight ∼ Λ−1

QCD �
λheavy ∼ m−1

b as in light quark physics where λlight ∼
m−1

π � λheavy ∼ Λ−1
QCD. Some important progress has

been achieved recently by designing methods to solve in a
more efficient way the multi-scale problem, both in heavy
and light quark physics.

4.1 Heavy quark physics

The lattice can in principle provide precise numbers for
many quantities of phenomenological interest such as the
B meson decay constants and bag parameters:

FB,Bs
, BB,Bs

, ξ ≡ FBs

√
BBs

FBd

√
BBd

(25)

where

〈Bq|O∆M=2|Bq〉 =
4
3
m2

Bq
F 2

Bq
BBq

〈Bq|b̄γµγ5q|0〉 = ipµFBq (26)

Many results have been obtained in recent years using
a plethora of approximations to overcome the two-scale
problem. Unfortunately, errors are mostly dominated by
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Fig. 14. Up: continuum extrapolation of the charm quark
mass using three different methods and O(a)-improved Wilson
fermions (from [41]). Down: continuum extrapolation of the Ds

meson decay constant using O(a)-improved Wilson fermions
(from [42])

systematics associated to these approximations. There are
essentially two strategies:

Class A: use relativistic heavy quarks
It has been demonstrated that typical lattice sizes can

reliably accommodate quarks in the charm region using
O(a)-improved Wilson fermions. In Fig. 14, the continuum
extrapolation of the charm quark mass and the Ds meson
decay constant in the quenched approximation are shown.
Clearly the cutoff effects are under control.

The charm quark mass and FDs decay constant
have thus been obtained in the quenched approximation
with unprecedent precision (systematic errors other than
quenching effects are fully understood):

mMS
c (mMS

c ) = 1.301(34) FDs = 252(9)MeV. (27)

However, these results also indicate that, given the size
of the cutoff effects in Fig. 14, dangerously large extrapo-
lations would be needed for quark masses in the b-quark
mass region.

The hyperfine splitting in charmonium has also been
computed very precisely using O(a)-improved Wilson
fermions [43]. This splitting is shown in Fig. 15 for fully
improved, tree-level improved and unimproved Wilson
fermions. Clearly full non perturbative improvement is
very important to have a reliable continuum extrapolation
as is illustrated by the different results from the different
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Fig. 15. Continuum extrapolation of the hyperfine split-
ting of charmonium. Data are shown for tree-level improved
(Clover), non-perturbatively improved (Clover non-pert.) and
unimproved Wilson fermions (Wilson). Two different fits for
the tree-level improved and unimproved data are shown: linear
in a2 and a respectively (up) and quadratic (with a and a2

terms) (down). Taken from [43]

fits to the unimproved or tree-level improved data. The
continuum value obtained for ∆M = M(J/ψ) −M(ηc) =
77(2)(6)MeV is considerably smaller than the experimen-
tal value 117MeV. The difference must be due to the
quenched approximation. Interestingly this is one of the
quantities which shows largest quenching artifacts.

Class B: non-relativistic expansion in ΛQCD

mb

It is well-known that a very useful method in b-physics
is the heavy quark effective theory (HQET) [46], in which
the degrees of freedom associated with the b-quark mass
are integrated out. At order O(1/mb), the Lagrangian is
given by:

LHQET = Ψ̄hD0Ψh − 1
2mb

Ψ̄hD2Ψh − cσ
2mb

Ψ̄hB · σΨh

+O
(
ΛQCD

mb

)2

.(28)

The idea here is to use this effective theory on the lattice
since the cutoff can then be much lower thanmb. The main
difficulty of this method comes however from the fact that
the matching (the determination of the couplings in the
effective theory) and the renormalization of the effective
theory must be done non-perturbatively, because there are
generically power divergences [47]. If the matching is for
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example done perturbatively at l-th loop level, an error in
the coupling ck remains:

∆ck ∼ g
2(l+1)
0

a
∼ 1
aln(aΛ)l+1

a→0−→ ∞, (29)

and the continuum limit strictly speaking cannot be taken.
The second difficulty comes from the fact that it is only

realistic to use HQET at NLO (since higher order involve
many more couplings). Working at this order implies that

uncertainties O
(

ΛQCD

mb

)2
remain. Nevertheless it is still

very useful since the static limit can be combined with
the relativistic approach to perform an interpolation to
mb as opposed to an extrapolation from either end. Also
the non-perturbative determination of the couplings and
matrix elements in HQET gives very valuable information
for continuum phenomenology.

In the past year, significant progress has been achieved
in class A and B methods to reduce systematic errors with
the use of finite-size scaling techniques.

Recently it has been realized that the b-quark can be
simulated in a small volume, such that L0mb � 1,mba �
1, L0ΛQCD ≤ 1 [44,45]. This of course implies that any
observable will show large finite volume effects. However
these can be corrected by multiplying the observable by
a step scaling function, which relates the observable com-
puted in the small volume to that in a volume twice as
large:

σ(mh,ml, L0) ≡ O(mh,ml, 2L0)
O(mh,ml, L0)

, (30)

and depends on the volume and the light and heavy scales.
The process can be iterated to arrive to a realistically large
volume:

O(mh,ml, 2nL0) =
n−1∏

i=1

σ(mh,ml, 2iL0) O(mh,ml, L0)

(31)

The important observation is that the step scaling func-
tion has a continuum limit, which can taken at each step,
and that it is a much smoother function of the heavy
mass, mh, since the leading dependence on this scale,
O(ml/mh), is expected to cancel in the ratio so that only
corrections of O(1/mhL) remain in σ. The series of step
functions can be computed in a series of lattices with in-
creasing a and L0 and roughly fixed amh and mhL0. A
continuum and heavy quark mass extrapolations are per-
formed at each step.

Figure 16 shows the heavy quark mass extrapolation
of the scaling function of the heavy-light decay constants.
The extrapolation to mb in the largest volume is a 6% ef-
fect as opposed to a 20% effect in the standard relativistic
approach.

With this method, new results for the B and D me-
son decay constants, FB,Bs , FD,Ds as well as the b-quark

Fig. 16. Heavy quark mass extrapolation to the b-quark mass
of the step scaling function of the heavy-strange (Hs) and
heavy-light (Hu) decay constants. Taken from [45]

mass have been computed with significantly smaller sys-
tematic uncertainties (other than quenching). A summary
plot from the parallel contribution [9] compares these re-
sults with previous ones in Fig. 17.

Concerning class B methods, in the past year a
new method has been proposed to perform the non-
perturbative matching and renormalization of HQET us-
ing again finite-size scaling techniques [48,49]. The main
idea is to match QCD and HQET in a finite (small) vol-
ume and then use an iterative procedure, to run to L → ∞
within the effective theory, with a cutoff a−1 � mb.

One of the examples considered by the authors of [49]
is that of the b-quark mass in the static limit. The start-
ing point is the computation of the energy of a state with
the quantum numbers of the B meason, Γ (L0), in a finite
volume V = L4

0 in QCD. In order to correct for finite-size
effects, the difference between this quantity measured in
the effective theory in a lattice with size L0 and 2L0 is
computed and extrapolated to the continuum limit. This
computation is repeated a number of times in order to ap-
proach eventually a realistic volume size. As the volume
is increased, the cutoff can be increased so that the num-
ber of points in the lattice is roughly the same in each
iteration. The final value of the b-quark mass can the be
obtained from:

MB︸︷︷︸
exp.

= ∆Γstat(22L0, a)︸ ︷︷ ︸
a<0.07fm→0

+∆Γstat(2L0, a)︸ ︷︷ ︸
a<0.05fm→0

+ ∆Γstat(L0, a)︸ ︷︷ ︸
a<0.025fm→0

+ΓQCD(L0,mb)︸ ︷︷ ︸
a<0.0125fm→0

L0 = 0.2fm (32)

with ∆Γstat(L, a) ≡ Γstat(2L, a) − Γstat(L, a).
The result for the b-quark mass in the static limit re-

ported in the last reference of [49] is

mMS
b (mMS

b ) = 4.12(8)GeV + O
(
Λ

mb

)
. (33)

More recently results for FBs have been presented in [50]
from an interpolation of the renormalization group invari-
ant axial current matrix element between the relativistic
and static result as shown in Fig. 18:

FBs = 206(10)MeV. (34)
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Fig. 17. Summary plots for the D and B mesons decay con-
stants, taken from [9]. The points labeled Rome-II correspond
to the finite size scaling approach discussed in the text

For more details on this method, see the parallel contri-
bution in [6].

Unfortunately, these promising ideas have not yet been
applied to the matrix elements of four-fermion operators.
Some interesting new results on the determination of life-
time ratios and width differences were presented in the
parallel contribution of [8].

4.2 Light quark physics

The approach to the regime of the light quark masses is
one of the most difficult problems in Lattice QCD both
quenched and unquenched. Typical simulations consider
quark masses larger than ms

2 . The difficulty in approach-
ing the regime of the light quark masses originates in the
vacuum structure of QCD. Spontaneous chiral symmetry

Fig. 18. Interpolation of the renormalization group invariant
matrix element of the axial current (which is proportional to
the decay constant) between the static limit and the relativistic
determinations around the charm quark mass. Taken from [6]

breaking (χSB) via a quark condensate implies that the
density of eigenvalues close at zero is finite [51]:

lim
m→0

〈q̄q〉 ≡ −Σ = −πρ(0) 	= 0. (35)

In a finite volume the implication is that both the low
(non-zero) eigenvalues and also the level splittings are con-
trolled by the parameter 1

ΣV [52], so the lowest eigen-
value in particular decreases linearly with the volume.
This poses on the one hand an algorithmic problem in
the quenched case, where the cost of computing a quark
propagator increases linearly with the volume close to the
chiral limit, that becomes much more serious in the un-
quenched case. Furthermore, the absence of a gap in the
spectrum implies a two-scale problem in that the two dif-
ferent scales: the pseudoscalar mass and ΛQCD have to be
treated simultaneously.

The standard approach to extract the physics of light
quarks is to use χPT to extrapolate results from mq 
ms/2 → 0. However it has been shown that this is the
source of one of the most important systematic uncer-
tainties both in light (e.g. Fπ) and heavy quark physics
(e.g. FBd

, BBd
). In Fig. 19 the chiral extrapolations of the

pseudoscalar decay constant for light-light , FPSr0, and
heavy-light mesons, FBq

√
MBq

, are shown. The system-
atic uncertainty in the chiral extrapolations is clearly very
large.

The combination of the lattice and χPT is in principle
the most economical way of studying the physics of light
mesons at low momenta, since these are determined to
a great extent by the pattern of chiral symmetry break-
ing. The QCD χ-Lagrangian incorporates automatically
all the Ward identity relations and parametrizes what is
not determined by symmetry by a set of low energy con-
stants [54]. An expansion at low momenta gives the fol-
lowing Lagrangian:

LQCD
χ = L(2) + L(4) + ...

L(2)
χ =

F 2

4
Tr
[
∂µU

†∂µU
]− Σ

2
Tr
[
eiθ/NfMU + h.c.

]
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Fig. 19. Chiral extrapolations of the pseudoscalar decay con-
stant (up) and that of the Bs and B mesons (down) with par-
tially quenched (Nf = 2) lattice data. Taken from [53]

L(4)
χ = L1Tr

[
∂µU

†∂µU
]2

+ L2
(
Tr
[
∂µU

†∂νU
])2

+ ...(36)

with M the quark mass matrix, U = ei2Φ/F , Φ the light
meson field and θ the vacuum angle.

The low energy couplings of this Lagrangian (LECs):
Σ,F,Li=1−10, ... parametrize the non-perturbative dy-
namics that is not determined by symmetry and the lattice
is the optimal method to determine them.

The weak interactions responsible for weak decays such
as ∆S = 1 can also be included in the effective theory:

L∆S=1 =
GF

2
√

2
sin θC cos θC

∑

i

Ci
W (µ)Oi(µ) (37)

where the O′
is transform as (27, 1), (8, 1) or (8, 8) under

SU(3)L × SU(3)R: to leading order there are only four
such operators:

L∆S=1
χ = g(27,1)t

ij
kl

(
U∂µU

†)
ik

(
U∂µU

†)
jl

+ g(8,8)t̃
ij
klUikU

†
jl + g

(1)
(8,1)cij

(
∂µU∂µU

†)
ij

+ g
(2)
(8,1)cij

(
MU + U†M†)

ij
+ ..., (38)

where tijkl, t̃
ij
kl and cij are apropriate tensors.

Table 1. Phenomenological determination of the LECs [55]

i αr
i (Mρ) ≡ 8(4π)2Lr

i (Mρ) O(NC)

2α1 − α2 −0.8 ± 0.8 O(1)
α2 1.7 ± 0.4 O(NC)
α3 −4.4 ± 1.4 O(NC)
α4 −0.4 ± 0.6 O(1)
α5 1.8 ± 0.6 O(NC)
α6 −0.25 ± 0.4 O(1)
α7 −0.5 ± 0.25 O(1)
α8 1.1 ± 0.4 O(NC)
α9 8.7 ± 0.9 O(NC)
α10 −6.9 ± 0.9 O(NC)

The problem is that the matching between the effective
theory and QCD to fix the low-energy couplings should
be done at mq → 0 and not at mq → ms, because higher
order effects may be important around ms and it is not
clear how many couplings are necessary in this range. This
matching is however an essential step to check the range
of validity of χPT and to get rid of the systematic error
in chiral extrapolations.

Obviously getting the low energy couplings, which are
presently rather poorly constrained from phenomenology
(see Table 1), would be extremely important for many
applications. For example the fundamental question of
whether mu = 0 or not is connected to the value of
2α8 − α5, which cannot be determined unambiguously in
χPT [56]. This combination can be measured unambigu-
ously on the lattice and this has been done recently both
in the quenched and partially quenched approximations.
The results are summarized in Fig. 20.

There is a good statistical accuracy in this quantity,
but there are still large systematic effects coming from
chiral extrapolations, as discussed above. On the other
hand, an unreasonably large unknown systematic effect
would be needed to accommodate mu = 0.

Recently the goal of matching QCD and χPT at mq →
0 is being pursued actively. The main ingredients are on
the one hand the use of GW fermions, which satisfy an
exact chiral symmetry, and on the other the use of finite-
size scaling techniques to avoid the two-scale problem. In
particular, the chiral limit can be taken in a finite vol-
ume. Provided LΛQCD � 1, finite volume effects are fully
calculable within χPT in terms of the infinite-volume low
energy constants. Lattice simulations are always done in
a reasonably large volume compared to ΛQCD. However
depending on the quark mass, one can encounter the sit-
uations illustrated in Fig. 21. When the volume and the
quark mass are such that the Compton wavelength of the
pion is much shorter than the size of the box, mπL � 1,
finite volume effects are exponentially supressed. See left
plot in Fig. 21. On the other hand if the quark mass is fur-
ther decreased at some point mπL ∼ 1 and finite-size cor-
rections are suppressed like a power O((FL)−2) (Fig. 21
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Fig. 20. Lattice determinations of the couplings α5, α8 and
2α8 − α5 for quenched [57] and partially quenched [58,59,60]
data as indicated by Nf . The full squares and their associated
vertical bands are the expected values that would be compati-
ble with the hypothesis mu = 0, while the open squares are the
values favoured phenomenologically by large Nc arguments

mπ
−1

L L

mπ
−1

L

mπ
−1

Fig. 21. Compton wavelength of the pions compared to the
lattice size in the three regimes discussed in the text

center). In both cases, however, chiral perturbation theory
can be done in the usual way, the only difference with the
infinite volume calculation is that momenta of the pions
are quantized.

Finally when the quark mass is so small that mπL � 1
and F 2m2

πV < 1, then the standard chiral perturbation
theory breaks down (Fig. 21 right). The zero-mode (i.e.
the constant field configuration) of the pion field becomes
non-perturbative signalling that spontaneous symmetry
breaking does not occur in a finite volume. It was real-
ized a long time ago by Gasser and Leutwyler [61] that
the perturbative series can be reordered by factoring out
the constant field configurations and treating them as col-
lective variables:

U = U0Uξ = U0 e
i 2ξ(x)/F

∫
dxξ(x) = 0. (39)

The path integral then involves exact integrals over the
flavour group manifold and a perturbative expansion for
the non-zero modes:

Z =
∫

SU(Nf )
dU0

∫
dξ e−Sχ(U0,ξ). (40)

A convenient expansion for this regime is the so-called
ε-expansion where the power counting is:

MP

4πF
∼
( p

4πF

)2
∼ 1

4π(LF )2
∼ O(ε2). (41)

The fact that powers of the pion mass and the momentum
are counted differently implies a reordering of the chiral
expansion:

L̃χ = L̃(0)
χ + L̃(2)

χ + ... (42)

While the leading order Lagrangian is the same as the
leading one in (36), at next-to-leading order there are
many differences. Out of the ten operators in the stan-
dard expansion only half appear in the ε-regime at NLO:

p-regime ε-regime

L1 〈DµU
†DµU〉2 √

L2 〈DµU
†DνU〉 〈DµU†DνU〉 √

L3 〈DµU
†DµUDνU

†DνU〉 √
L4 〈DµU

†DµU〉 〈U†χ+ χ†U〉 ×
L5 〈DµU

†DµU
(
U†χ+ χ†U

)〉 ×
L6 〈U†χ+ χ†U〉2 ×
L7 〈U†χ− χ†U〉2 ×
L8 〈χ†Uχ†U + U†χU†χ〉 ×
iL9 〈Fµν

R DµUDνU
† + Fµν

L DµU
†DνU〉 √

L10 〈U†Fµν
R UFLµν〉 √

with χ ≡ MU uµ ≡ i∂µUU
†. An even more dramatic

simplification occurs in the weak Hamiltonian.
A number of quantities have been computed to NLO

in the ε-expansion both in the full and quenched theories:
quark condensate, meson propagators in a θ vacuum and
in fixed topology [62]. More recently three-point functions
including the ∆S = 1 Hamiltonian have been obtained
also at NLO [63].

The matching between lattice data and χPT in the
ε-regime (i.e. as close as possible to the chiral limit in a
finite volume) should provide determinations of the low-
energy couplings with a minimal systematic uncertainty
from the chiral extrapolation. Work in this direction is
being pursued actively [64].

5 The beast: Unquenching

Lattice QCD simulations in the quenched approximation
have achieved a remarkable level of maturity and there are
now many quantities:

– Light hadron spectrum
– Strange quark physics: ms, FK

– Charm quark physics: mc, FDs , quarkonium levels
– Running coupling
– ...
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Fig. 22. Spectroscopy calculations in full QCD with Nf = 2
and quenched QCD from [65]

that are known up to a few per cent statistical accuracy,
with no other systematic uncertainty than that associated
to the quenched approximation itself.

Several large collaborations with O(1) Tflop computer
power (CPPACS, JLQCD, MILC, UKQCD, ...) have pro-
duced in recent years many results beyond the quenched
approximation with Nf = 2 mostly. Figure 22 from [65]
show some spectroscopy calculations with Nf = 2. Al-
though the results seem to come closer to experiment than
the quenched results, the situation is far from satisfactory,
due to the large systematic uncertainties. Most simula-
tions have used rather coarse lattice spacings (a ≥ 0.09fm)
and are quite far from the chiral limit (mπ

mρ
= 0.6 − 0.8).

Last year new simulations were reported with Nf = 3
and an ”improved” staggered action at a = 1/8 fm [66].
Their main results are summarized in Fig. 23.

Although these results are exciting, particularly be-
cause quark masses are significantly lighter than in pre-
vious simulations (mπ/mρ = 0.3!), questions of principle
remain concerning the action. For instance fundamental
issues such as the locality of the staggered action are not
fully understood, as mentioned in the introduction.

fπ

fK

3MΞ −MN

2MBs −MΥ

ψ(1P − 1S)

Υ(1D − 1S)

Υ(2P − 1S)

Υ(3S − 1S)

Υ(1P − 1S)

LQCD/Exp’t (nf = 0)
1.110.9

LQCD/Exp’t (nf = 3)
1.110.9

Fig. 23. Results from a Nf = 3 simulation with “improved”
staggered fermions at a = 0.125 fm. Taken from [66]
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Fig. 24. Results from a Nf = 3 simulation with “improved”
staggered fermions at a = 0.125 fm. Taken from [66]

On the other hand, the use of a perfectly safe fermion
action such as the improved Wilson action faces enormous
difficulties to reach such a chiral regime. This issue was
the topic of a pannel discussion in the Berlin 2001 lattice
conference. Figure 24 from [67] shows the expected com-
puter power that will be needed to get 1000 thermalized
unquenched configurations in a lattice of extent L = 2 fm
as a function of the ratio mπ/mρ. Although it was ex-
pected that algorithms should get more expensive with
lighter quark masses, the increase in cost is quite spectac-
ular. The empirical result for the scaling of the cost with
the quark mass and the volume is, in Teraflop year,

#oper.
conf.

∼ 3
[
140MeV

mπ

]6 [
L

3fm

]5 [0.1fm
a

]7
Tfy (43)
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Fig. 25. Fall of the Berlin Wall

Next generation of computers will be in the range
of O(10)Tflops (QCDOC, ApeNEXT). This will allow to
reach mπ

mρ
∼ 0.4−0.6 and a−1 = 2−3 GeV in the next few

years, which will probably be still too far from the physical
point. Unless we do get smarter probably another order
of magnitude in computer power will still be needed to
arrive to the state-of-the-art quenched simulations of to-
day with present algorithms. One should however keep in
mind that there is a large potential gain by improvements
in the algorithms and new ideas have been put forward
in the past year [68,69]. Also there has been a prolifera-
tion on improved actions, which show a similar scaling as
that in (43), but a better starting point [3]. In many cases,
however, questions of principle remain to be understood
in these cases.

6 Conclusions

Lattice Field Theory is a mature and active field which
has the best chance to answer non-perturbative questions
in QCD and other gauge theories from first principles.
Progress in recent years has been remarkable thanks to
– Exponential improvement in computer power
– Improvements in algorithms, actions and the questions

being asked
Many quantities have been computed in the quenched ap-
proximation to a few per cent accuracy with full control
over systematic errors: light hadron spectrum, Λ, ms, FK ,
mc, FDs , etc A similar standard in unquenched simula-
tions will take longer due to the Berlin wall of Fig. 24 but
as in Fig. 25 we also hope to succeed!
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